Sunday, December 6, 2015

Do We Really Need Zero-Inflated Models?-Paul Allison

Paul Allison discusses zero inflated vs negative binomial models in a post I stumbled across recently. Also William Greene and Paul go back and forth on some technical distinctions and nuances (which may be quite important) in the comments.

"In all data sets that I've examined, the negative binomial model fits much better than a ZIP model, as evaluated by AIC or BIC statistics. And it's a much simpler model to estimate and interpret. So if the choice is between ZIP and negative binomial, I'd almost always choose the latter."

"But what about the zero-inflated negative binomial (ZINB) model? It's certainly possible that a ZINB model could fit better than a conventional negative binomial model regression model. But the latter is a special case of the former, so it's easy to do a likelihood ratio test to compare them (by taking twice the positive difference in the log-likelihoods). In my experience, the difference in fit is usually trivial..."

"So next time you're thinking about fitting a zero-inflated regression model, first consider whether a conventional negative binomial model might be good enough. Having a lot of zeros doesn't necessarily mean that you need a zero-inflated model."

No comments:

Post a Comment